Press release - 21/03/2022 BMBF funds Heidelberg Junior Research Group for 3D Bioprinting Project Junior Professor Dr Daniela Duarte Campos has been awarded a substantial grant from the Federal Ministry of Education and Research (BMBF). She and her junior research group are investigating bioprinting for tissue and organ engineering at the Center for Molecular Biology of Heidelberg University and at the “3D Matter Made to Order” Cluster of Excellence, a collaboration between Ruperto Carola and Karlsruhe Institute of Technology (KIT).https://www.gesundheitsindustrie-bw.de/en/article/press-release/bmbf-funds-heidelberg-junior-research-group-3d-bioprinting-project
Dossier - 16/12/2021 Advanced therapy medicinal products: gene and cell therapies Novel gene and cell therapies for treating incurable and hereditary diseases have raised high expectations. However, success has so far been limited to the long-established bone marrow transplants involving the administration of haematopoietic stem cells used to treat blood cancer. CAR T-cell therapies have recently emerged as a major new hope in cancer treatment.https://www.gesundheitsindustrie-bw.de/en/article/dossier/advanced-therapy-medicinal-products-gene-and-cell-therapies
Laboratory automation - 29/11/2021 Reaching the goal quickly and efficiently with the help of artificial intelligence Medical research is slow, costly and time-consuming. The system developed by the start-up LABMaiTE could soon change that. With the help of artificial intelligence, it will be possible to automate laboratory experiments and collect and analyse data at the same time.https://www.gesundheitsindustrie-bw.de/en/article/news/reaching-goal-quickly-and-efficiently-help-artificial-intelligence
Press release - 14/09/2021 Bridging antibodies plus enhancer can destroy breast cancer cells Scientists from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have developed antibodies that have two antigen-binding sites and can couple cancer cells with effector cells of the immune system. In laboratory tests, these bridging antibodies, together with an enhancer antibody, were able to specifically mobilize the body's own immune defenses and destroy breast cancer cells.https://www.gesundheitsindustrie-bw.de/en/article/press-release/Bridging-antibodies-plus-enhancer-can-destroy-breast-cancer-cells
Article - 10/03/2021 Faster to single cells using miniature grinder Tissue cells are needed for medical diagnostics, cell therapies and tissue engineering, among other things. A novel tissue grinder gently and automatically dissociates cells from tissue. In November 2020, the newly founded biotech company Fast Forward Discoveries GmbH (FFX) delivered its first tissue grinders to customers.https://www.gesundheitsindustrie-bw.de/en/article/news/faster-single-cells-using-miniature-grinder
Press release - 04/03/2021 Induced pluripotent stem cells reveal causes of disease Induced pluripotent stem cells (iPSC) are suitable for discovering the genes that underly complex and also rare genetic diseases. Scientists from the German Cancer Research Center (DKFZ) and the European Molecular Biology Laboratory (EMBL), together with international partners, have studied genotype-phenotype relationships in iPSCs using data from approximately one thousand donors.https://www.gesundheitsindustrie-bw.de/en/article/press-release/induced-pluripotent-stem-cells-reveal-causes-disease
Press release - 03/03/2021 New Baden-Württemberg network to reduce animal experiments A new network has been set up in Baden-Württemberg aimed at reducing animal experiments as well as further improving animal welfare. It combines new approaches and measures at the state’s biomedical research locations, which are expected to limit stress in laboratory animals and steadily reduce the number of animals used in research in line with the 3R principles of Replacement, Reduction, and Refinement.https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-baden-wuerttemberg-network-reduce-animal-experiments
Biochip systems - 02/09/2020 Miniature organs with great potential Dr. Peter Loskill and his team at the Fraunhofer Institute in Stuttgart and the University Hospital of Tübingen are developing what is known as an "organ-on-a-chip" (OoC). An OoC is a microfluidic system that simulates small functional units of organ tissue. OoCs can be used in different ways: in basic and pharmaceutical research as well as in clinical research and application, where they might render many animal experiments…https://www.gesundheitsindustrie-bw.de/en/article/news/miniature-organs-great-potential
Dossier - 14/06/2016 CRISPR/Cas – genome editing is becoming increasingly popular The number of publications and patents that involve the CRISPR/Cas system has been increasing exponentially since the technique was first described a few years ago. The increase in funding for projects involving CRISPR/Cas also demonstrates how powerful this new method is. The targeted modification of genomes (also called gene or genome editing) using CRISPR/Cas is extraordinarily accurate and also has the potential to cure hereditary diseases. https://www.gesundheitsindustrie-bw.de/en/article/dossier/crisprcas-genome-editing-is-becoming-increasingly-popular
Dossier - 12/03/2012 Regenerative medicine makes use of patients own resources Die Regenerative Medizin bietet neue Therapieoptionen quer durch die ärztlichen Fachgebiete. Zumeist sind es zellbasierte Verfahren und sie werden häufig mit innovativen Biomaterialien kombiniert. Regenerative Therapien vereinen Know-how aus den Biowissenschaften mit moderner Medizintechnik und sie profitieren von den Fortschritten in den Ingenieur- und Materialwissenschaften.https://www.gesundheitsindustrie-bw.de/en/article/dossier/regenerative-medicine-makes-use-of-patients-own-resources