Press release - 11/10/2023 The new Center for Bionic Intelligence Tübingen Stuttgart The new Center for Bionic Intelligence Tübingen Stuttgart aims to optimize the interaction between humans and technical systems in a fundamentally new way. Scientists from the Universities of Stuttgart and Tübingen, the Max Planck Institute for Intelligent Systems and the Max Planck Institute for Biological Cybernetics are conducting research on intelligent bionic systems that will aid understanding and treatment of certain diseases of the CNS.https://www.gesundheitsindustrie-bw.de/en/article/press-release/zentrum-fuer-bionic-intelligence-tuebingen-stuttgart-gegruendet
Press release - 19/09/2023 Better distinguish chronic inflammation and cancer of the pancreas Current diagnostic methods do not always reliably distinguish between chronic inflammation of the pancreas and pancreatic cancer. About one third of all diagnoses are inconclusive. Scientists from the German Cancer Research (DKFZ) and from Heidelberg University Hospital (UKHD) therefore searched for molecular markers that could specify this diagnosis.https://www.gesundheitsindustrie-bw.de/en/article/press-release/chronische-entzuendung-und-krebs-der-bauchspeicheldruese-praeziser-unterscheiden
Sustainability report - 31/08/2023 ReKlimaMed: how effective is the German healthcare sector when it comes to sustainability? Hospitals, care facilities and the healthcare industry, together with laboratories, private practices and pharmacies, ensure our medical care, but in so doing they produce enormous amounts of greenhouse gases and consume many resources. The ReKlimaMed report prepared by the viamedica foundation presents an inventory of current sustainable activities, and provides stakeholders with information and recommendations for action.https://www.gesundheitsindustrie-bw.de/en/article/news/reklimamed-how-effective-german-healthcare-sector-when-it-comes-sustainability
DNA nanotechnology - 25/08/2023 Artificial cytoskeleton made of DNA for synthetic cells The physicists Prof. Dr. Kerstin Göpfrich and Prof. Dr. Laura Na Liu want to understand life from the bottom up. They intend to do this by constructing an artificial cell. However, rather than natural protein building blocks, they are using 3D-DNA structures as construction material. The first step involved creating an artificial cell skeleton that dynamically assembles and disassembles like the biological model and can transport vesicles.https://www.gesundheitsindustrie-bw.de/en/article/news/artificial-cytoskeleton-made-dna-synthetic-cells
Press release - 18/07/2023 National Research Center for cutting-edge AI research in Tübingen celebrates inception On Tuesday, July 18, 2023, the Tübingen AI Center held a symposium to celebrate its permanent establishment as a national AI center. Since July 1, 2022, it has received 20 million euros a year in funding from the federal government and the state. https://www.gesundheitsindustrie-bw.de/en/article/press-release/nationales-forschungszentrum-fuer-ki-spitzenforschung-tuebingen-feiert-seine-gruendung
Press release - 13/07/2023 Intelligent rubber materials Wearable medical devices, such as soft exoskeletons that provide support for stroke patients or controlled drug delivery patches, have to be made of materials that can adapt intelligently and autonomously to the wearer's movements and to changing environmental conditions. These are the type of autonomously switchable polymer materials that have recently been developed by researchers at the University of Stuttgart and the University of…https://www.gesundheitsindustrie-bw.de/en/article/press-release/intelligent-rubber-materials
Press release - 20/06/2023 Pangolin the inspiration for medical robot Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart have developed a magnetically controlled soft medical robot with a unique, flexible structure inspired by the body of a pangolin. The robot is freely movable despite built-in hard metal components. Thus, depending on the magnetic field, it can adapt its shape to be able to move and can emit heat when needed.https://www.gesundheitsindustrie-bw.de/en/article/press-release/pangolin-inspiration-medical-robot
Press release - 17/05/2023 Playing hide and seek in the centromere Centromeres, the DNA sections often found at the center of the chromosomes, display enormous interspecies diversity, despite having the same vital role during cell division across almost the entire tree of life. An international team of researchers has discovered that the variation in centromere DNA regions can be strikingly large even within a single species. The findings, now published in the journal Nature, shed light on the molecular…https://www.gesundheitsindustrie-bw.de/en/article/press-release/playing-hide-and-seek-centromere
Press release - 09/05/2023 New strategy for clinically relevant protein sequencing Proteins have characteristic amino acid sequences, the analysis of which is fundamental for research and medicine. These can be decoded; however, so-called protein sequencing is expensive and time-consuming. A large-scale research project led by Prof. Dr. Jan Behrends from the Institute of Physiology at the University of Freiburg now aims to establish a new technology for protein sequencing using nanopores, which will be rapid and cost-effective.https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-strategy-clinically-relevant-protein-sequencing
"Programmable" polymer materials - 24/04/2023 Medicine of the future: intelligent 4D polymers from the printer It is impossible to imagine medicine without 3D printing, which can be used to make implants or for culturing cells and tissues. It is now possible for 3D objects to be given an added dimension, namely an ability to make simple autonomous movements, by changing their size. Researchers at Heidelberg University have been able to produce microscopically small 4D structures from intelligent polymers that can be tailored to individual requirements.https://www.gesundheitsindustrie-bw.de/en/article/news/medicine-future-intelligent-4d-polymers-printer
Press release - 21/04/2023 New research building for engineering life-inspired molecular systems Heidelberg University is to acquire a research building to develop innovative engineering science strategies and technologies on the basis of life-inspired molecular systems. The German Science and Humanities Council has now expressed its backing for the idea with an outstanding rating. This recommendation is the crucial precondition for a new building on the university campus Im Neuenheimer Feld. https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-research-building-engineering-life-inspired-molecular-systems
Press release - 23/03/2023 Targeted computer modelling to accelerate antiviral drug development Effective drugs against viral diseases like COVID-19 are urgently needed now and in the future. The emergence of viral mutants and yet unknown viruses could push vaccines to their limits. The DZIF scientist and bioinformatician Andreas Dräger from the University of Tübingen is working on a computer-based method that can help to accelerate the time-consuming identification and development of antiviral agents. Using a novel analysis technique that…https://www.gesundheitsindustrie-bw.de/en/article/press-release/computermodellierung-zur-schnelleren-entwicklung-antiviraler-medikamente
Press release - 31/01/2023 ERC Consolidator Grants for Two Researchers from KIT In the 2022 allocation round for the award of the prestigious Consolidator Grants of the European Research Council, researchers of Karlsruhe Institute of Technology (KIT) have been successful. For their projects in the fields of photovoltaics and medical sensor technology, physicist Ulrich W. Paetzold and chemist Frank Biedermann will receive approximately two million euros over the next five years.https://www.gesundheitsindustrie-bw.de/en/article/press-release/erc-consolidator-grants-fuer-zwei-forscher-des-kit
Press release - 24/01/2023 Controlling neural exoskeletons more precisely with diamond sensors Brain-computer interfaces are able to restore some mobility to paralyzed people by controlling exoskeletons. However, more complex control signals cannot yet be read from the head surface because conventional sensors are not sensitive enough. A collaboration of Fraunhofer IAF, Charité – Universitätsmedizin Berlin, University of Stuttgart and other industrial partners has taken up this challenge.https://www.gesundheitsindustrie-bw.de/en/article/press-release/mit-diamant-sensoren-neurale-exoskelette-praeziser-steuern
Press release - 09/12/2022 Epigenetic emergency switch improves defense against infections During infections, the hematopoietic system switches from normal to emergency mode. This improves the defense against the pathogens. Scientists at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have now found an epigenetic switch in blood stem cells and progenitor cells of mice that can trigger the switch from one mode to the other.https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetic-emergency-switch-improves-defense-against-infections
Press release - 29/11/2022 Prototype funding for two Konstanz projects Chemical building blocks from plastic waste; Reducing the risk of falls using virtual orientation aids: Konstanz chemists Manuel Häußler and Lukas Odenwald as well as sport scientist Lorenz Assländer receive Baden-Württemberg prototype funding for their transfer projects "Waste2DCA" and "Augmented Balance".https://www.gesundheitsindustrie-bw.de/en/article/press-release/doppelter-erfolg-der-prototypenfoerderung
Press release - 24/11/2022 Green chemistry: BAM investigates pharmaceutical production without solvents and CO2 emissions The Bundesanstalt für Materialforschung und -prüfung (BAM) is developing a more sustainable process to produce active pharmaceutical ingredients in a major EU project: The pilot project is intended to demonstrate the advantages of mechanochemistry for more environmentally friendly and CO2-neutral pharmaceutical production.https://www.gesundheitsindustrie-bw.de/en/article/press-release/gruene-chemie-bam-erforscht-arzneimittelproduktion-ohne-loesungsmittel-und-co2-ausstoss
Press release - 24/11/2022 SARS-CoV-2 detection in 30 minutes using gene scissors Researchers of the University of Freiburg introduce biosensor for the nucleic acid amplification-free detection of SARS-CoV-2 RNA. https://www.gesundheitsindustrie-bw.de/en/article/press-release/sars-cov-2-nachweis-30-minuten-mit-der-genschere
Press release - 15/11/2022 Silicone Sponge Captures Unknown Bacteria From human intestines to the bottom of the sea: Microorganisms populate nearly any habitat, no matter how hostile it is. Their great variety of survival strategies is of huge potential in biotechnology. Most of these organisms, however, are unknown, because they cannot be cultivated.https://www.gesundheitsindustrie-bw.de/en/article/press-release/silikonschwamm-spuert-unbekannte-bakterien-auf
Press release - 25/10/2022 Three ERC Synergy Grants For Universität Heidelberg Scientists Heidelberg University scientists are to receive three ERC Synergy Grants – three highly endowed grants of the European Research Council – for pioneering research projects by several teams working in collaboration.https://www.gesundheitsindustrie-bw.de/en/article/press-release/three-erc-synergy-grants-universitaet-heidelberg-scientists
Dossier - 12/10/2022 The health sector must become greener Worldwide, the health sector is struggling with the consequences of global warming, but fatally is itself responsible for a significant proportion of greenhouse gas emissions. Studies show that hospitals and rehabilitation clinics in particular have great potential for reducing these emissions and, like the manufacturing industry, need to fundamentally revise established processes.https://www.gesundheitsindustrie-bw.de/en/article/dossier/health-sector-must-become-greener-1
Press release - 04/10/2022 Microscopic Octopuses from a 3D Printer Although just cute little creatures at first glance, the microscopic geckos and octopuses fabricated by 3D laser printing in the molecular engineering labs at Heidelberg University could open up new opportunities in fields such as microrobotics or biomedicine. The printed microstructures are made from novel materials – known as smart polymers – whose size and mechanical properties can be tuned on demand and with high precision. https://www.gesundheitsindustrie-bw.de/en/article/press-release/mikroskopisch-kleine-kraken-aus-dem-3d-drucker
Press release - 06/09/2022 Biointelligent sensor for measuring viral activity Today, genome editing is almost as easy as programming software. However, the generation of viral vectors as initial material is still associated with many expensive and error-prone handling procedures. Viruses are generated via complex biological processes that have to be optimised virus-specifically in order to produce high-quality therapeutics. A new method is needed that simplifies and optimises these processes.https://www.gesundheitsindustrie-bw.de/en/article/press-release/Biointelligent-sensor-for-measuring-viral-activity
Biotech in outer space - 06/07/2022 yuri, a space start-up: weightlessness for commercial research Growing cells without the effect of gravity could revolutionise drug development. A start-up called yuri on Lake Constance enables made-to-measure experiments on the ISS for stem cells, artificial organs, surfaces and materials. On board the next mission are some mini-cell labs from Berlin's Charité and Goethe University Frankfurt.https://www.gesundheitsindustrie-bw.de/en/article/news/yuri-space-start-weightlessness-commercial-research
Press release - 29/06/2022 RNA modifications in mitochondria promote invasive spread of cancer Mitochondria are the power plants of cells, and they contain their own genetic material and RNA molecules. Scientists from the German Cancer Research Center (DKFZ) have now discovered that certain modifications in mitochondrial RNA boost the invasive spread of cancer cells by supporting protein synthesis in mitochondria.https://www.gesundheitsindustrie-bw.de/en/article/press-release/rna-modifications-mitochondria-promote-invasive-spread-cancer