Chronic inflammatory bowel diseases - 25/09/2024 Proinflammatory regulatory T lymphocytes as a therapeutic target in Crohn's disease Chronic inflammatory bowel diseases are very stressful for those affected and increase the risk of bowel cancer. PD Dr. Robyn Laura Kosinsky from the Bosch Health Campus in Stuttgart, together with researchers from the USA, identified disfunctional regulatory T cells as important drivers of inflammation in Crohn's disease. They also found that with the help of an epigenetically active drug, it was possible to restore the cells’ original…https://www.gesundheitsindustrie-bw.de/en/article/news/proinflammatory-regulatory-t-lymphocytes-therapeutic-target-crohns-disease
Press release - 05/09/2024 Cohesion at the cellular level: flexible yet stable Research teams from the Universities of Konstanz and Potsdam are analyzing how proteins work together to enable our cells to both stick and move. The marker protein paxillin is at the centre of their interest.https://www.gesundheitsindustrie-bw.de/en/article/press-release/cohesion-cellular-level-flexible-yet-stable
Press release - 04/09/2024 Epigenetic changes reprogram astrocytes into brain stem cells With mice, researchers showed that experimentally induced lack of blood flow in the brain epigenetically reprograms astrocytes into brain stem cells, which in turn can give rise to nerve progenitor cells. This discovery shows that astrocytes could potentially be used in regenerative medicine to replace damaged nerve cells.https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetic-changes-reprogram-astrocytes-brain-stem-cells
Press release - 09/07/2024 Unique characteristics of previously unexplored protein discovered Freiburg-Prague research collaboration achieves scientific breakthrough in understanding cell division. The international research collaboration has uncovered a new mechanism of the crosstalk between microtubules and actin cytoskeleton during cell division and revealed unique characteristics of the previously unexplored protein FAM110A.https://www.gesundheitsindustrie-bw.de/en/article/press-release/unique-characteristics-previously-unexplored-protein-discovered
Press release - 05/07/2024 Outstanding ideas – new imaging processes for cancer diagnostics and nanopropellers for ocular gene therapy The summer reception hosted by BioRegio STERN Management GmbH has once again provided a fitting backdrop for the Science2Start award ceremony. Last Thursday, at Tübingen observatory, was the 15th time that scientists and start-up founders were celebrated for outstanding ideas that a panel of experts judged to have special economic potential.https://www.gesundheitsindustrie-bw.de/en/article/press-release/outstanding-ideas-new-imaging-processes-cancer-diagnostics-and-nanopropellers-ocular-gene-therapy
Press release - 05/07/2024 The Symphony of Organelles With "OrgaPlexing", scientists at the MPI of Immunobiology and Epigenetics have developed a new method that shows how guardian cells of the immune system, the macrophages, orchestrate their cell structures during inflammation or bacterial infection, making it possible to observe the interactions between several organelles simultaneously and thus providing insights into cell metabolism and the production of inflammatory molecules. https://www.gesundheitsindustrie-bw.de/en/article/press-release/symphony-organelles
Press release - 13/06/2024 Which of the two DNA strands is damaged influences the cell's mutation profile Cancer genomes are the result of diverse mutation processes. Scientists have analyzed the molecular evolution of tumors after exposure to mutagenic chemicals. DNA lesions that persists unrepaired over several cell generations lead to sequence variations at the site of damage. This enabled the researchers to distinguish the contribution of the triggering lesion from that of the subsequent repair in shaping the mutation pattern.https://www.gesundheitsindustrie-bw.de/en/article/press-release/which-two-dna-strands-damaged-influences-cells-mutation-profile
Press release - 13/06/2024 Position of the cell nucleus affects epigenetics and therefore gene activity and cell function Depending on whether the cell nucleus of an epithelial cell is located on the outer or inner side of the tissue, the genome is more or less acetylated - genes can therefore be translated easier or harder. Scientists from the German Cancer Research Center (DKFZ) have demonstrated this for the first time in the development of the Drosophila wing. https://www.gesundheitsindustrie-bw.de/en/article/press-release/position-cell-nucleus-affects-epigenetics-and-therefore-gene-activity-and-cell-function
Press release - 31/05/2024 Heidelberg University successful with six bids for collaborative research In the current approval round of the German Research Foundation (DFG) Heidelberg University has been successful with six applications for grants to fund major, internationally visible research consortia. The six research consortia − three of them will reach the maximum funding length of twelve years after their extension − are to receive financial resources totalling nearly 87 million euros over a period of four years.https://www.gesundheitsindustrie-bw.de/en/article/press-release/heidelberg-university-successful-six-bids-collaborative-research
Press release - 22/05/2024 Stretched beyond the limits of the cell: the molecular biomechanics of collagen Together with colleagues from Israel and USA, HITS researcher Frauke Gräter investigates the effects of physical force on the collagen protein in two different animal model systems. Their goal is to measure the effects of mechanoradicals on the integrity of the tissue and the well-being of the organism, with impact on health and aging.https://www.gesundheitsindustrie-bw.de/en/article/press-release/stretched-beyond-limits-cell-molecular-biomechanics-collagen
Press release - 17/04/2024 Cell Biology: Molecular Code Stimulates Pioneer Cells to Build Blood Vessels in the Body Cardiovascular diseases, including stroke and myocardial infarction, are the world's leading causes of mortality, accounting for over 18 million deaths a year. A team of KIT researchers has now identified a new cell type in blood vessels responsible for vascular growth. This discovery may allow for novel therapeutic strategies to treat ischemic cardiovascular diseases, i.e. diseases that are caused by reduced or absent blood flow.https://www.gesundheitsindustrie-bw.de/en/article/press-release/zellbiologie-molekularer-code-regt-pionierzellen-zum-aufbau-von-blutgefaessen-im-koerper
Stem cell research - 14/03/2024 Using organoids to gain a better clinical understanding of pancreatic cancer Prof. Dr. Alexander Kleger carries out translational research at Ulm University Hospital to gain a better understanding of pancreatic ductal adenocarcinoma (PDAC) and develop individualised treatments. He and his team are using organoid models and stem cell-based systems and have succeeded in simultaneously cultivating all three main cell types of the pancreas from pluripotent stem cells.https://www.gesundheitsindustrie-bw.de/en/article/news/using-organoids-gain-better-clinical-understanding-pancreatic-cancer
Neurosciences - 28/02/2024 Mesh microelectrode arrays: research with brain organoids on a new level How does the brain work? Brain organoids are derived from pluripotent stem cells and regarded as valuable model systems that can depict some aspects of neurological functioning. Dr. Peter Jones from NMI together with Dr. Thomas Rauen from the MPI for Molecular Biomedicine in Münster, has taken organoid research to a new level. His novel mesh microelectrode array (Mesh-MEA) greatly improves the growth and electrophysiological analysis of tissue.https://www.gesundheitsindustrie-bw.de/en/article/news/mesh-microelectrode-arrays-research-brain-organoids-new-level
Press release - 22/02/2024 A new approach to recording cellular activities In living cells, a vast number of transient events occur simultaneously. The recording of these activities is a prerequisite for a molecular understanding of life. Scientists at the MPI for Medical Research in Heidelberg and their collaboration partners have created a novel technology that allows cellular events to be recorded through chemical labeling with fluorescent dyes for later analysis, opening up new ways to study cellular physiology.https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-approach-recording-cellular-activities
Nanoparticles as drug carriers - 09/11/2023 Inhalation of nanocarriers for antibiotics against resistant tuberculosis pathogens Around ten million people worldwide still contract tuberculosis every year. With an estimated 1.4 million deaths a year, tuberculosis was the world’s deadliest infectious disease until COVID-19. The high mortality rate is down to the sophisticated biology of the pathogen Mycobacterium tuberculosis. A team of researchers from the KIT and the Research Centre Borstel (FZB) has developed a method that aims to outsmart the bacterium once and for all.https://www.gesundheitsindustrie-bw.de/en/article/news/inhalation-nanocarriers-antibiotics-against-resistant-tuberculosis-pathogens
Project BlindZero - 03/08/2023 Hope for patients with eye diseases: human cornea from 3D printers Thousands of cornea transplants are performed every year. However, donors are rare and the procedure is not always without complications. Researchers at the University of Heidelberg are developing an innovative technique in the project BlindZero. It involves ‘printing’ human corneas directly onto patients’ eyes using 3D bioprinting. The reprogrammed genetically engineered cells used for this purpose are not expected to cause a rejection reaction.https://www.gesundheitsindustrie-bw.de/en/article/news/hope-patients-eye-diseases-human-cornea-3d-printers
Press release - 02/08/2023 Freiburg research team casts light on signal-dependent formation of mitochondria Known as the power plant of the cell, mitochondria are essential to human metabolism. Human mitochondria consist of 1,300 different proteins and two fatty biomembranes. The vast majority of mitochondrial proteins are produced with a cleavable transport signal and have to be actively transported into the mitochondria. https://www.gesundheitsindustrie-bw.de/en/article/press-release/freiburger-forschungsteam-klaert-signalabhaengige-bildung-von-mitochondrien-auf
Tumour organoids facilitate drug discovery - 20/07/2023 Drug screening for children with cancer using patient-specific miniature tumours Standard drugs often don’t work in children and adolescents with recurrent cancer. Researchers from the Hopp Children's Tumour Centre (KITZ) and the German Cancer Research Center (DKFZ) in Heidelberg have been looking to open up new therapy options for those affected, and have cultivated individual miniature tumours from biopsy samples to test the effectiveness of a variety of drugs within a few weeks.https://www.gesundheitsindustrie-bw.de/en/article/news/drug-screening-children-cancer-using-patient-specific-miniature-tumours
Press release - 17/05/2023 Playing hide and seek in the centromere Centromeres, the DNA sections often found at the center of the chromosomes, display enormous interspecies diversity, despite having the same vital role during cell division across almost the entire tree of life. An international team of researchers has discovered that the variation in centromere DNA regions can be strikingly large even within a single species. The findings, now published in the journal Nature, shed light on the molecular…https://www.gesundheitsindustrie-bw.de/en/article/press-release/playing-hide-and-seek-centromere
Press release - 01/03/2023 Pseudomonas aeruginosa Bacteria produce a molecule that paralyzes immune system cells Bacteria of the species Pseudomonas aeruginosa are antibiotic-resistant hospital germs that can enter blood, lungs and other tissues through wounds and cause life-threatening infections. In a joint project, researchers from the Universities of Freiburg and Strasbourg in France have discovered a mechanism that likely contributes to the severity of P. aeruginosa infections.https://www.gesundheitsindustrie-bw.de/en/article/press-release/pseudomonas-aeruginosa-bakterien-stellen-ein-molekuel-her-das-zellen-des-immunsystems-laehmt
Cytolytics GmbH - 14/02/2023 Bioinformatics meets medical diagnostics and drug development The start-up company Cytolytics from Tübingen has developed a robust and user-friendly software platform that uses machine learning for the automated analysis of cells. This is beneficial in areas such as cancer diagnostics and the development of new pharmaceutically active substances.https://www.gesundheitsindustrie-bw.de/en/article/news/bioinformatics-meets-medical-diagnostics-and-drug-development
Press release - 02/11/2022 How Cells Find the Right Partners During the growth and development of living organisms, different types of cells must come into contact with each other in order to form tissues and organs together. A small team working with Prof. Dr. Anne Classen of the Excellence Cluster CIBSS of the University of Freiburg has discovered that complex changes in form, or morphogenesis, during development are driven exclusively via the affinity of cells to each other.https://www.gesundheitsindustrie-bw.de/en/article/press-release/how-cells-find-right-partners
Press release - 18/08/2022 When smooth muscle cells lack strength University of Tübingen team discovers how malformations of the blood vessels can occur in mice – yielding information with possible ramifications for retinal disease.https://www.gesundheitsindustrie-bw.de/en/article/press-release/when-smooth-muscle-cells-lack-strength
Biotech in outer space - 06/07/2022 yuri, a space start-up: weightlessness for commercial research Growing cells without the effect of gravity could revolutionise drug development. A start-up called yuri on Lake Constance enables made-to-measure experiments on the ISS for stem cells, artificial organs, surfaces and materials. On board the next mission are some mini-cell labs from Berlin's Charité and Goethe University Frankfurt.https://www.gesundheitsindustrie-bw.de/en/article/news/yuri-space-start-weightlessness-commercial-research
Press release - 21/06/2022 Another step towards synthetic cells Scientists from the 2. Physics Institute at the University of Stuttgart and the Max Planck Institute for Medical Research were now able to take the next step towards synthetic cells: They introduced functional DNA-based cytoskeletons into cell-sized compartments and showed functionality. The results were recently published in Nature Chemistry.https://www.gesundheitsindustrie-bw.de/en/article/press-release/another-step-towards-synthetic-cells