Press release - 17/04/2024 Cell Biology: Molecular Code Stimulates Pioneer Cells to Build Blood Vessels in the Body Cardiovascular diseases, including stroke and myocardial infarction, are the world's leading causes of mortality, accounting for over 18 million deaths a year. A team of KIT researchers has now identified a new cell type in blood vessels responsible for vascular growth. This discovery may allow for novel therapeutic strategies to treat ischemic cardiovascular diseases, i.e. diseases that are caused by reduced or absent blood flow.https://www.gesundheitsindustrie-bw.de/en/article/press-release/zellbiologie-molekularer-code-regt-pionierzellen-zum-aufbau-von-blutgefaessen-im-koerper
Press release - 29/11/2023 Tracing the Evolution of the Cerebellum Heidelberg scientists unveil genetic programmes controlling the development of cellular diversity in the cerebellum of humans and other mammals. The research results have now been published in the journal Nature.https://www.gesundheitsindustrie-bw.de/en/article/press-release/tracing-evolution-cerebellum
Press release - 17/01/2023 Blood stem cells: not in charge in an emergency! After infections or blood loss, the body must compensate for the loss of blood cells as quickly as possible. This has long been considered the task of the hematopoietic stem cells in the bone marrow. But scientists at the German Cancer Research Center (DKFZ) have now discovered in mice that a certain population of progenitor cells takes over this task: This accelerates the regeneration of the blood cells.https://www.gesundheitsindustrie-bw.de/en/article/press-release/blood-stem-cells-not-charge-emergency
Press release - 05/10/2022 Second Stem Cell Type Discovered in Mouse Brain In the brain of adult mammals neural stem cells ensure that new nerve cells, i.e. neurons, are constantly formed. This process, known as adult neurogenesis, helps mice maintain their sense of smell. A research team led by Dr Francesca Ciccolini at the Interdisciplinary Center for Neurosciences (IZN) of Heidelberg University recently discovered a second stem cell population in the mouse brain. https://www.gesundheitsindustrie-bw.de/en/article/press-release/zweiter-stammzelltyp-im-maeusehirn-entdeckt
Press release - 15/07/2021 Mechanism for differentiation of specific immune cell types discovered Under certain conditions, our immune system can efficiently fight off infectious diseases and cancer. T cells, especially the gamma delta T cell type, play an important role in this. The issue is that this cell type is extremely infrequent in the human body. Researchers at the University Hospital Tübingen, the University of Heidelberg and the European Molecular Biology Laboratory (EMBL) have now succeeded in finding the cause for the formation of…https://www.gesundheitsindustrie-bw.de/en/article/press-release/mechanism-differentiation-specific-immune-cell-types-discovered
Press release - 04/03/2021 Induced pluripotent stem cells reveal causes of disease Induced pluripotent stem cells (iPSC) are suitable for discovering the genes that underly complex and also rare genetic diseases. Scientists from the German Cancer Research Center (DKFZ) and the European Molecular Biology Laboratory (EMBL), together with international partners, have studied genotype-phenotype relationships in iPSCs using data from approximately one thousand donors.https://www.gesundheitsindustrie-bw.de/en/article/press-release/induced-pluripotent-stem-cells-reveal-causes-disease
Organ failure due to fatty liver - 24/09/2020 HepaRegeniX develops an active substance for liver regeneration When the liver stops regenerating on its own, it might be possible in future for doctors to intervene with a chemical agent. Tübingen-based HepaRegeniX GmbH is developing a promising candidate with the aim of improving the treatment of both acute and chronic liver failure. https://www.gesundheitsindustrie-bw.de/en/article/news/heparegenix-develops-active-substance-liver-regeneration
Dossier - 18/04/2016 Epigenetics – heritable traits without changing the DNA sequence Epigenetics, i.e. the inheritance of traits that does not involve a change in the DNA sequence, was once a controversial subject that has since become a central focus of biological research. Epigenetic inheritance is now studied by numerous national and international research programmes. Many cellular regulatory and differentiation processes are controlled by epigenetic mechanisms that take place on different levels.https://www.gesundheitsindustrie-bw.de/en/article/dossier/epigenetics-heritable-traits-without-changing-the-dna-sequence
Dossier - 27/08/2012 Evo-devo - the synthesis of developmental biology and evolution Evo-devo research has led to completely new ideas concerning the evolution of animals. The huge variety of animals is the result of changes in the activity of a limited number of master genes that control early embryonic development. These master genes have been highly conserved throughout evolution, which is why their analysis allows conclusions to be drawn concerning the evolution of multicellular animals and their different body plans.https://www.gesundheitsindustrie-bw.de/en/article/dossier/evo-devo-the-synthesis-of-developmental-biology-and-evolution