Press release - 30/10/2024 Diabetes switch in DNA: Non-coding region in the genome influences ONECUT1 gene They are underestimated genetic control elements: it is known that changes in the genome can trigger diabetes. But now researchers at the University Hospital Ulm and the INSERM Cochin Institute in Paris have shown that a previously under-researched region of the genome also plays a crucial role in the development of this disease. https://www.gesundheitsindustrie-bw.de/en/article/press-release/diabetes-switch-dna-non-coding-region-genome-influences-onecut1-gene
Press release - 25/09/2024 How do rare genetic variants affect health? AI provides more accurate predictions Whether we are predisposed to particular diseases depends to a large extent on the countless variants in our genome. However in the case of genetic variants the influence on the presentation of certain pathological traits has been difficult to determine. Researchers have introduced an algorithm based on deep learning that can predict the effects of rare genetic variants. https://www.gesundheitsindustrie-bw.de/en/article/press-release/how-do-rare-genetic-variants-affect-health-ai-provides-more-accurate-predictions
Press release - 19/09/2024 Quality standards for looking into the tumor genome Personalized medicine with individually tailored therapies is becoming more a reality in cancer. This requires a look into the genetic material of tumors, a molecular diagnostic tumor profile. A research group from the German Network for Personalized Medicine (DNPM) has recorded the quality standards according to which genome analyses are carried out in Germany. The data is a prerequisite for integrating gene sequencing into routine care. https://www.gesundheitsindustrie-bw.de/en/article/press-release/quality-standards-looking-tumor-genome
Press release - 04/09/2024 Epigenetic changes reprogram astrocytes into brain stem cells With mice, researchers showed that experimentally induced lack of blood flow in the brain epigenetically reprograms astrocytes into brain stem cells, which in turn can give rise to nerve progenitor cells. This discovery shows that astrocytes could potentially be used in regenerative medicine to replace damaged nerve cells.https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetic-changes-reprogram-astrocytes-brain-stem-cells
Press release - 22/08/2024 Validated targets for personalized cancer immunotherapy Knowledge of the target structures for the immune cells is a basic prerequisite for the development of personalized cancer immunotherapies. Scientists from the German Cancer Research Center and the NCT Heidelberg are publishing a sensitive method based on mass spectroscopy to identify such tumor-specific "neoepitopes". The analytical method is designed to detect these low abundance protein fragments and requires minimal amounts of…https://www.gesundheitsindustrie-bw.de/en/article/press-release/validated-targets-personalized-cancer-immunotherapy
Press release - 21/08/2024 A molecular control hub maintains order How are proteins in our cells modified while they are still being synthesized? An international team of researchers from the University of Konstanz, Caltech, and ETH Zurich has deciphered the molecular mechanism of this vital process. https://www.gesundheitsindustrie-bw.de/en/article/press-release/molecular-control-hub-maintains-order
Press release - 04/07/2024 Antibody can improve immune cell therapy against leukemia Scientists from the German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD) have shown that the combination of therapeutic immune cells, known as CAR T cells, and a bispecific antibody could improve the treatment of leukaemia. In the culture dish and in mice, they tested CAR-T cells directed against the B-cell marker CD19 in combination with bispecific antibodies that bind to the B-cell-specific protein CD20. https://www.gesundheitsindustrie-bw.de/en/article/press-release/antibody-can-improve-immune-cell-therapy-against-leukemia
Press release - 02/07/2024 Artificial intelligence helps physicians make precise heart diagnoses Researchers from the University of Heidelberg have published a study on more than 60,000 patients in the renowned journal Lancet Digital Health, demonstrating the potential of AI in cardiac medicine.https://www.gesundheitsindustrie-bw.de/en/article/press-release/artificial-intelligence-helps-physicians-make-precise-heart-diagnoses
Press release - 21/06/2024 New tool maps microbial diversity with unprecedented details Researchers from the Max Planck Institute for Biology Tübingen developed the groundbreaking tool SynTracker. SynTracker expands traditional microbial analysis by considering genomic structural variation to complement existing SNP-based methods. This innovation reveals more precision and depths of microbial strain diversity and evolution.https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-tool-maps-microbial-diversity-unprecedented-details
Press release - 13/06/2024 Which of the two DNA strands is damaged influences the cell's mutation profile Cancer genomes are the result of diverse mutation processes. Scientists have analyzed the molecular evolution of tumors after exposure to mutagenic chemicals. DNA lesions that persists unrepaired over several cell generations lead to sequence variations at the site of damage. This enabled the researchers to distinguish the contribution of the triggering lesion from that of the subsequent repair in shaping the mutation pattern.https://www.gesundheitsindustrie-bw.de/en/article/press-release/which-two-dna-strands-damaged-influences-cells-mutation-profile
Press release - 12/06/2024 Pathogen identification — next-generation sequencing optimizes diagnostics Invasive infections such as sepsis require immediate and targeted treatment. Experts from the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB and group partners have succeeded in establishing a reconceptualized detection principle that can make a crucial contribution to saving lives through fast, ultra-accurate pathogen identification. They have been chosen to receive the 2024 Stifterverband Science Prize for their efforts.https://www.gesundheitsindustrie-bw.de/en/article/press-release/pathogen-identification-next-generation-sequencing-optimizes-diagnostics
Press release - 31/05/2024 Heidelberg University successful with six bids for collaborative research In the current approval round of the German Research Foundation (DFG) Heidelberg University has been successful with six applications for grants to fund major, internationally visible research consortia. The six research consortia − three of them will reach the maximum funding length of twelve years after their extension − are to receive financial resources totalling nearly 87 million euros over a period of four years.https://www.gesundheitsindustrie-bw.de/en/article/press-release/heidelberg-university-successful-six-bids-collaborative-research
Press release - 16/05/2024 Colorectal cancer: tracking down subtypes Colorectal cancer differs from patient to patient. That is why scientists are looking for characteristic tumors markers that allow to make predictions about the likely response to certain therapies and the individual prognosis. The aim is to identify colorectal cancer subtypes so that these can then be treated in a customized manner. https://www.gesundheitsindustrie-bw.de/en/article/press-release/colorectal-cancer-tracking-down-subtypes
Press release - 17/04/2024 Cell Biology: Molecular Code Stimulates Pioneer Cells to Build Blood Vessels in the Body Cardiovascular diseases, including stroke and myocardial infarction, are the world's leading causes of mortality, accounting for over 18 million deaths a year. A team of KIT researchers has now identified a new cell type in blood vessels responsible for vascular growth. This discovery may allow for novel therapeutic strategies to treat ischemic cardiovascular diseases, i.e. diseases that are caused by reduced or absent blood flow.https://www.gesundheitsindustrie-bw.de/en/article/press-release/zellbiologie-molekularer-code-regt-pionierzellen-zum-aufbau-von-blutgefaessen-im-koerper
Press release - 22/03/2024 New Emmy Noether junior research group for biological data science An Emmy Noether junior research group at Heidelberg University is investigating how to gain new insights into fundamental biological mechanisms from large-scale molecular data sets. Led by Junior Professor Dr Britta Velten, it has started work at the Centre for Organismal Studies and the Interdisciplinary Center for Scientific Computing. https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-emmy-noether-junior-research-group-biological-data-science
Press release - 14/03/2024 Machine learning classifier accelerates the development of cellular immunotherapies Making a personalised T cell therapy for cancer patients currently takes at least six months; scientists at the German Cancer Research Center (DKFZ) and the University Medical Center Mannheim have shown that the laborious first step of identifying tumor-reactive T cell receptors for patients can be replaced with a machine learning classifier that halves this time.https://www.gesundheitsindustrie-bw.de/en/article/press-release/machine-learning-classifier-accelerates-development-cellular-immunotherapies
Press release - 05/03/2024 New Center for Synthetic Genomics Applying and developing new technologies for DNA synthesis to pave the way for producing entire artificial genomes – that is the goal of a new interdisciplinary center, 'Center for Synthetic Genomics', that is being established at Heidelberg University, Karlsruhe Institute of Technology (KIT), and Johannes Gutenberg University Mainz (JGU). https://www.gesundheitsindustrie-bw.de/en/article/press-release/new-center-synthetic-genomics
Press release - 11/12/2023 Heidelberg center for personalized medicine achieves the highest quality standards The German Cancer Society has certified the Center for Personalized Medicine (ZPM) at Heidelberg University Hospital. At the ZPM Heidelberg, patients with advanced and rare cancers and, in future, people with severe chronic inflammatory diseases will receive a molecular genetic analysis. The detailed information can open up new treatment options for those affected.https://www.gesundheitsindustrie-bw.de/en/article/press-release/zentrum-fuer-personalisierte-medizin-heidelberg-erfuellt-hoechste-qualitaetsstandards
Press release - 30/11/2023 Taking antibiotics back in time University of Tübingen researchers reverse the evolution of a class of antibiotics to gain insights for the development of new drugs.https://www.gesundheitsindustrie-bw.de/en/article/press-release/taking-antibiotics-back-time
Press release - 29/11/2023 Tracing the Evolution of the Cerebellum Heidelberg scientists unveil genetic programmes controlling the development of cellular diversity in the cerebellum of humans and other mammals. The research results have now been published in the journal Nature.https://www.gesundheitsindustrie-bw.de/en/article/press-release/tracing-evolution-cerebellum
Press release - 10/11/2023 Therapy resistance in multiple myeloma: molecular analyses of individual cancer cells reveal new mechanisms All cancer cells - even those within the same tumor - differ from each other and change over the course of a cancer disease. Scientists at Heidelberg University Hospital, the Medical Faculty in Heidelberg and the German Cancer Research Center discovered molecular changes in multiple myeloma that help individual cancer cells to survive therapy.https://www.gesundheitsindustrie-bw.de/en/article/press-release/therapy-resistance-multiple-myeloma-molecular-analyses-individual-cancer-cells-reveal-new-mechanisms
Press release - 25/10/2023 Epigenetically acting drugs could support cancer immunotherapy Epigenetically active drugs enable the cell to read parts of the genome that were previously blocked and inaccessible. This leads to the formation of new mRNA transcripts and also new proteins, as scientists from the German Cancer Research Center and the University Hospital Tübingen have now published. These "therapy-induced epitopes" could help the immune system recognize cancer cells.https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetically-acting-drugs-could-support-cancer-immunotherapy
Press release - 25/10/2023 Epigenetically acting drugs could support cancer immunotherapy Epigenetically active drugs enable the cell to read parts of the genome that were previously blocked and inaccessible. This leads to the formation of new mRNA transcripts and also new proteins, as scientists from the German Cancer Research Center and the University Hospital Tübingen have now published. These "therapy-induced epitopes" could help the immune system recognize cancer cells.https://www.gesundheitsindustrie-bw.de/en/article/press-release/epigenetisch-wirkende-medikamente-koennten-krebs-immuntherapie-unterstuetzen
Press release - 17/10/2023 BioCopy and YUMAB announce partnership for development of innovative safeTY-engager® platform The development of highly specific T-cell engagers directed against pHLA tumor targets will be quick and easy. BioCopy's innovative pHLA screening technology characterizes drug candidates in great depth for their specific binding against the desired pHLA tumor target. YUMAB develops highly specific antibodies with their advanced antibody technologies.https://www.gesundheitsindustrie-bw.de/en/article/press-release/biocopy-und-yumab-verkuenden-partnerschaft-fuer-entwicklung-innovativer-safety-engager-r-plattform
Press release - 28/08/2023 Innovative computational approach helps design proteins for cancer treatment The computational design of new proteins for biomedical or other applications involves long computing times on powerful servers. A joint team of researchers from the Max Planck Institute for Biology Tübingen and the University Hospital Tübingen has now developed and tested a new computational method to greatly speed up the necessary energy calculations. Their framework allows for a precise and efficient design of functional proteins.https://www.gesundheitsindustrie-bw.de/en/article/press-release/innovative-computational-approach-helps-design-proteins-cancer-treatment