zum Inhalt springen

Bildung von Poren in Mitochondrien-Membran aufgeklärt

Mitochondrien gelten als Kraftwerke der Zellen, sie sind wesentlich für den menschlichen Stoffwechsel. Fehlfunktionen von 40 Prozent der mitochondrialen Proteine sind mit menschlichen Krankheiten assoziiert, weshalb sie auch für die medizinische Forschung eine wichtige Rolle spielen. Ein bislang noch ungeklärter Vorgang in den komplexen Mitochondrien war die Bildung ihrer Fass-Poren.

Diese befinden sich innerhalb der mitochondrialen Außenmembran und dienen als Portal, durch das Stoffe zwischen Mitochondrien und dem Zellwasser ausgetauscht werden. Forschende der Universität Freiburg und der Universität Kyoto/Japan haben nun durch strukturelle und funktionelle Experimente den Steuerungsmechanismus aufklären können, über den die Poren gebildet werden. Die Studie des Teams um Prof. Dr. Nils Wiedemann und Prof. Dr. Nikolaus Pfanner von der Fakultät für Medizin und dem Exzellenzcluster CIBSS der Universität Freiburg und um Prof. Dr. Toshiya Endo von der Kyoto Sangyo University in Japan ist in der Zeitschrift „Nature Structural & Molecular Biology“ veröffentlicht. „Fass-Poren sind lebensnotwendig, da sie unentbehrlichen für den Stoffaustaustauch innerhalb der Zellen sind“, erläutert Wiedemann. „Sie besser zu verstehen, ist ein wichtiger Baustein für die zelluläre Grundlagenforschung.“

Ähnlichkeiten zur Weinfassstruktur

Bereits bekannt war, dass die Fass-Poren in Mitochondrien aus einem Eiweißmolekül aufgebaut sind, das dazu bis zu 19-mal durch die Außenmembran gefaltet werden muss. Diese so genannten Beta-Stränge, welche die Außenmembran durchspannen, werden dabei wie die Längshölzer/Dauben bei der Weinfassherstellung im Kreis angeordnet, damit eine Pore in der mitochondrialen Außenmembran gebildet wird. Die Beta-Fass-Proteine werden von der Sortierungs- und Assemblierungs-Maschinerie (SAM) in der mitochondrialen Außenmembran zusammengebaut.

Rollen von Sam50 und Sam37

Durch die Aufreinigung und erstmalige Aufklärung einer Proteinkomplex-Struktur der Sortierungs- und Assemblierungs-Maschinerie zusammen mit einem Beta-Fass-Protein während der Beta-Fass-Bildung konnte bewiesen werden, dass der letzte Beta-Strang der Beta-Fass-Proteine zunächst an Sam50 (eine Protein-Untereinheit der Sortierungs- und Assemblierungs-Maschinerie) in der mitochondrialen Außenmembran angelagert wird. Danach werden die weiteren Stränge nacheinander zusammengefügt. Dabei ist der Teil der Eiweißkette der Beta-Fass-Proteine vor den Strängen nicht nur für deren Funktion, sondern auch für deren Zusammenbau wichtig.

Die Untereinheit Sam37 besitzt indes einen Vorsprung, der in die mitochondriale Außenmembran ragt, um den die Stränge der Beta-Fass-Proteine zirkulär angeordnet werden. Funktionelle Experimente, bei denen der Vorsprung von Sam37 entfernt wurde, zeigten, dass der Vorsprung entscheidend für den Ringschluss der Beta-Fass-Proteine ist. „Damit konnte der Untereinheit Sam37 eine Funktion als Fassbinder/Küfer für die Bildung der lebenswichtigen Beta-Fass-Membranproteine in unseren Zellkraftwerken zugeordnet werden“, erläutert Wiedemann.

Publikation:

Takeda, H., Busto, J.V., Lindau, C., Tsutsumi, A., Tomii, K., Imai, K., Yamamori, Y., Hirokawa, T., Motono, C., Ganesan, I., Wenz, L.S., Becker, T., Kikkawa, M., Pfanner, N., Wiedemann, N., Endo, T. (2023): A multipoint guidance mechanism for β-barrel folding on the SAM complex. In: Nature Structural & Molecular Biology. DOI: 10.1038/s41594-022-00897-2

Seiten-Adresse: https://www.gesundheitsindustrie-bw.de/fachbeitrag/pm/bildung-von-poren-mitochondrien-membran-aufgeklaert