Effektiver zu therapeutischen Antikörpern
Immunglobuline sind Antikörper, die vom Immunsystem als Antwort auf das plötzliche Auftreten von Makromolekülen gebildet werden und sind beispielsweise auf der Zelloberfläche eingedrungener Bakterien oder entarteten Körperzellen zu finden. Sie spielen eine wichtige Rolle zur Identifizierung und Bekämpfung von Infektionen wie Hepatitis A/B oder Tollwut, zur Bekämpfung von Krebszellen und auch als Marker in COVID-Schnelltests. Der Bedarf an solchen therapeutischen Antikörpern ist enorm. Forschende der Universität Stuttgart unter Leitung von Prof. Ralf Takors und der Technischen Universität Hamburg (TUHH) arbeiten am Beispiel von Immunglobulin IgG1 daran, die Produktion durch Scale-up (Maßstabsübertragung) zu erhöhen.
Biopharmazeutika, das heißt biotechnologisch produzierte Medikamente, Antibiotika und Impfstoffe, werden heute meist industriell in großen Bioreaktoren produziert. Neben Mikroorganismen werden für besonders komplizierte Produkte wie etwa Antikörper empfindliche Säugerzellen aus menschlichen oder tierischen Geweben eingesetzt. Diese sensiblen Zellen müssen in Bioreaktoren optimal mit Nährstoffen und Sauerstoff versorgt werden, damit sie sich wohlfühlen und gut produzieren. Dies gelingt in kleinen Laborreaktoren einfacher als in großen, industriellen Bioreaktoren. Um die Kultivierungsbedingungen in großen Produktionsreaktoren zu verbessern, müssen Laborreaktoren bereits die Bedingungen aus großen Bioreaktoren gut abbilden, sodass der Prozess aus dem Labor möglichst 1:1 in den industriellen Maßstab überführt werden kann.
Maßgeschneidertes Scale-up zur industriellen Produktion
Was im kleinen Maßstab gut funktioniert, ist nur durch ein maßgeschneidertes Scale-up vom Labor auf die industrielle Produktion übertragbar. Hier setzt die Forschung von CHOLife (Experimentelle Multiskalenanalyse und Simulation von Lifelines im Bioreaktor) an und untersucht das Scale-up am Beispiel des Immunglobulins IgG1. Dabei finden im Team um Prof. Michael Schlüter am Institut für Mehrphasenströmungen der TUHH experimentelle Validierungen und Simulationen statt, um die Durchmischung von Stoffkomponenten mittels dreidimensionaler Strömungsfelder und "Lifelines" genauer zu untersuchen. Die Gruppe um Prof. Ralf Takors am Institut für Bioverfahrenstechnik der Universität Stuttgart untersucht die dazugehörigen praktischen Parameter im Labor und verifiziert die Ergebnisse des Teams der TUHH mit Hilfe eines neuartigen experimentellen Scale-up Simulators.
Neue Ansätze für Immunglobulin-Herstellung
Das Projekt will nicht nur grundlegende physiologische Merkmale des Scale-up zur Produktion von Wirkstoffen nachahmen, sondern gezielt das Verhalten von Zellen in der komplexen mehrphasigen Umgebung des Bioreaktors vom Labor bis zu einem 12.000 Liter-Bioreaktor erforschen. Dies geschieht mit so genannten eukaryotischen Zellen. Da diese den humanen Zellen ähnlich sind, lassen sich auch die Antikörper, die man dabei erhält, in der Humanmedizin einfacher verwenden. Das ist etwa für die Verträglichkeit von Impfstoffen oder Medikamenten wichtig. Erste Ergebnisse zeigen, dass es möglich ist, sowohl vom kleinen Labormaßstab auf große Industrieprozesse (Scale-up), als auch umgekehrt von großvolumigen Mehrphasen-Prozessen im 12.000 Liter-Bioreaktor auf den Labormaßstab (Scale-down) rückzuschließen. Um effiziente und zuverlässige Strategien für die robuste Herstellung von Produkten wie Immunglobulinen sicherzustellen, bewähren sich vor allem ein 4D-Partikeltracking der TUHH und der sensitive Scale-up Simulator von der Universität Stuttgart. In dem Tandemprojekt der beiden Universitäten kann modelliert werden, welchen verschiedenen Kulturbedingungen die Zellen im industriellen Maßstab in einem Bioreaktor ausgesetzt sind und wie sie sich dabei verhalten.