Damit das Gewebe in unserem Körper zusammenhält, müssen sich die Zellen aneinander, aber auch an extrazellulären Strukturen, wie z.B. Kollagenfasern des Bindegewebes und der Haut, festhalten. Wie genau funktioniert dies auf zellulärer Ebene? Welche Proteine spielen dabei welche Rolle? Neue Daten und Erkenntnisse dazu veröffentlichen nun zwei Forschungsteams um den Konstanzer Zellbiologen Christof Hauck und den Potsdamer Chemiker Heiko Möller in der Open Access Zeitschrift „PLOS Biology“. Die Ergebnisse ihrer Studie können dazu beitragen, so die Wissenschaftler, medizinische Wirkstoffe weiterzuentwickeln, die bereits bei entzündlichen Darmerkrankungen oder in der Vorbeugung von Herzinfarkten Anwendung finden.
Paxillin als Bindeglied zum intrazellulären Stützapparat
Spezialisierte Membranproteine, Integrine, sorgen für den Zusammenhalt im Gewebe. Sie dienen als Verankerungspunkte der Zellen. Jede Zelle besitzt eine ganze Reihe dieser Verankerungspunkte, sogenannte fokale Adhäsionen, die wie kleine Füßchen der Zelle Halt geben. Damit Integrine sich auch mit dem intrazellulären Stützapparat, dem Zytoskelett, verknüpfen können, sind sie auf die Zusammenarbeit mit Proteinen in der Zelle angewiesen.
Eines dieser Proteine ist Paxillin. Da Paxillin als Bindeglied zwischen Integrinen und dem Zytoskelett in allen Zellen vorhanden ist, dient es auch als Marker, um die punkt- und strichförmigen Verankerungspunkte oder fokalen Adhäsionen sichtbar zu machen.
Anders als die Begriffe Zytoskelett und fokale Adhäsion vermuten lassen, sind diese Verankerungspunkte keinesfalls statisch. Während der Fortbewegung von Zellen beispielsweise werden sie ständig aufgelöst und an anderer Stelle neu geknüpft, etwa wenn Bindegewebszellen eine Wunde in unserer Haut schließen müssen. Die neuen Daten der Wissenschaftler*innen belegen, dass Paxillin dabei direkt an den intrazellulären Teil des Integrins bindet. Es klammert sich sozusagen am Rezeptor fest.
Analyse der 3D-Stuktur ergibt wichtiges Puzzleteil
Die ForscherInnen konnten im Detail die genaue Interaktionsstelle sowohl in Paxillin als auch im Integrin eingrenzen und die zuvor unbekannte 3D-Struktur dieses Teils von Paxillin ermitteln.
„Ein entscheidendes Puzzlestück zum Verständnis der Wechselwirkung dieser beiden Proteine ergab sich bei der Überlagerung der 3D-Struktur von Paxillin mit der festgestellten Bindungsstelle für das Integrin: Diese Stelle ist in Paxillin als bewegliche Lasche ausgebildet, die sich sehr wahrscheinlich wie eine Klammer am Integrin festhalten, aber entsprechend unkompliziert auch wieder lösen kann“, erklärt der Chemiker Möller. Zellbiologe Hauck ergänzt: „Im Prinzip scheint die Flexibilität dieses Segments von Paxillin durch das Greifen und Loslassen des Integrins die Beweglichkeit der Zelle als Ganzes zu unterstützen.“
Anwendung auf medizinische Wirkstoffe
Die dynamischen Proteinstrukturen wurden mittels Kernspinresonanzspektroskopie (NMR) durch die Arbeitsgruppe von Heiko Möller in Potsdam analysiert. „Daraufhin konnten wir in Konstanz gezielt Varianten von Paxillin und Integrinen herstellen und in lebenden Zellen überprüfen, wie sie sich jeweils auf die Bildung und Zusammensetzung von fokalen Adhäsionen auswirken. Wir können nun neue Hypothesen aufstellen, wie diese gebildet und umgebaut werden“, sagt Hauck.
Schon heute setzt die Medizin zur Vorbeugung von Herzinfarkten oder zur Behandlung von entzündlichen Darmerkrankungen Wirkstoffe ein, die Integrine und deren Fähigkeit zur Anheftung manipulieren. Die Ergebnisse der Studie, so versprechen sich die WissenschaftlerInnen, können in Zukunft dazu beitragen, neue Wirkstoffe zur gezielten Beeinflussung von zellulären Anheftungspunkten zu entwickeln.